28 research outputs found

    Fotogrametría de rango cercano aplicada a la Ingeniería Agroforestal

    Get PDF
    Tesis por compendio de publicaciones[EN]Since the late twentieth century, Geotechnologies are being applied in different research lines in Agroforestry Engineering aimed at advancing in the modeling of biophysical parameters in order to improve the productivity. In this study, low-cost and close range photogrammetry has been used in different agroforestry scenarios to solve identified gaps in the results and improve procedures and technology hitherto practiced in this field. Photogrammetry offers the advantage of being a non-destructive and non-invasive technique, never changing physical properties of the studied element, providing rigor and completeness to the captured information. In this PhD dissertation, the following contributions are presented divided into three research papers: • A methodological proposal to acquire georeferenced multispectral data of high spatial resolution using a low-cost manned aerial platform, to monitor and sustainably manage extensive áreas of crops. The vicarious calibration is exposed as radiometric calibration method of the multispectral sensor embarked on a paraglider. Low-cost surfaces are performed as control coverages. • The development of a method able to determine crop productivity under field conditions, from the combination of close range photogrammetry and computer vision, providing a constant operational improvement and a proactive management in the crop monitoring. An innovate methodology in the sector is proposed, ensuring flexibility and simplicity in the data collection by non-invasive technologies, automation in processing and quality results with low associated cost. • A low cost, efficient and accurate methodology to obtain Digital Height Models of vegatal cover intended for forestry inventories by integrating public data from LiDAR into photogrammetric point clouds coming from low cost flights. This methodology includes the potentiality of LiDAR to register ground points in areas with high density of vegetation and the better spatial, radiometric and temporal resolution from photogrammetry for the top of vegetal covers.[ES]Desde finales del siglo XX se están aplicando Geotecnologías en diferentes líneas de investigación en Ingeniería Agroforestal orientadas a avanzar en la modelización de parámetros biofísicos con el propósito de mejorar la productividad. En este estudio se ha empleado fotogrametría de bajo coste y rango cercano en distintos escenarios agroforestales para solventar carencias detectadas en los resultados obtenidos y mejorar los procedimientos y la tecnología hasta ahora usados en este campo. La fotogrametría ofrece como ventaja el ser una técnica no invasiva y no destructiva, por lo que no altera en ningún momento las propiedades físicas del elemento estudiado, dotando de rigor y exhaustividad a la información capturada. En esta Tesis Doctoral se presentan las siguientes contribuciones, divididas en tres artículos de investigación: • Una propuesta metodológica de adquisición de datos multiespectrales georreferenciados de alta resolución espacial mediante una plataforma aérea tripulada de bajo coste, para monitorizar y gestionar sosteniblemente amplias extensiones de cultivos. Se expone la calibración vicaria como método de calibración radiométrico del sensor multiespectral embarcado en un paramotor empleando como coberturas de control superficies de bajo coste. • El desarrollo de un método capaz de determinar la productividad del cultivo en condiciones de campo, a partir de la combinación de fotogrametría de rango cercano y visión computacional, facilitando una mejora operativa constante así como una gestión proactiva en la monitorización del cultivo. Se propone una metodología totalmente novedosa en el sector, garantizando flexibilidad y sencillez en la toma de datos mediante tecnologías no invasivas, automatismo en el procesado, calidad en los resultados y un bajo coste asociado. • Una metodología de bajo coste, eficiente y precisa para la obtención de Modelos Digitales de Altura de Cubierta Vegetal destinados al inventario forestal mediante la integración de datos públicos procedentes del LiDAR en las nubes de puntos fotogramétricas obtenidas con un vuelo de bajo coste. Esta metodología engloba la potencialidad del LiDAR para registrar el terreno en zonas con alta densidad de vegetación y una mejor resolución espacial, radiométrica y temporal procedente de la fotogrametría para la parte superior de las cubiertas vegetales

    Automatic tree parameter extraction by a Mobile LiDAR System in an urban context

    Get PDF
    e0196004In an urban context, tree data are used in city planning, in locating hazardous trees and in environmental monitoring. This study focuses on developing an innovative methodology to automatically estimate the most relevant individual structural parameters of urban trees sampled by a Mobile LiDAR System at city level. These parameters include the Diameter at Breast Height (DBH), which was estimated by circle fitting of the points belonging to different height bins using RANSAC. In the case of non-circular trees, DBH is calculated by the maximum distance between extreme points. Tree sizes were extracted through a connectivity analysis. Crown Base Height, defined as the length until the bottom of the live crown, was calculated by voxelization techniques. For estimating Canopy Volume, procedures of mesh generation and α-shape methods were implemented. Also, tree location coordinates were obtained by means of Principal Component Analysis. The workflow has been validated on 29 trees of different species sampling a stretch of road 750 m long in Delft (The Netherlands) and tested on a larger dataset containing 58 individual trees. The validation was done against field measurements. DBH parameter had a correlation R2 value of 0.92 for the height bin of 20 cm which provided the best results. Moreover, the influence of the number of points used for DBH estimation, considering different height bins, was investigated. The assessment of the other inventory parameters yield correlation coefficients higher than 0.91. The quality of the results confirms the feasibility of the proposed methodology, providing scalability to a comprehensive analysis of urban treesS

    Yield prediction by machine learning from UAS‑based mulit‑sensor data fusion in soybean

    Get PDF
    16 p.Nowadays, automated phenotyping of plants is essential for precise and cost-effective improvement in the efficiency of crop genetics. In recent years, machine learning (ML) techniques have shown great success in the classification and modelling of crop parameters. In this research, we consider the capability of ML to perform grain yield prediction in soybeans by combining data from different optical sensors via RF (Random Forest) and XGBoost (eXtreme Gradient Boosting). During the 2018 growing season, a panel of 382 soybean recombinant inbred lines were evaluated in a yield trial at the Agronomy Center for Research and Education (ACRE) in West Lafayette (Indiana, USA). Images were acquired by the Parrot Sequoia Multispectral Sensor and the S.O.D.A. compact digital camera on board a senseFly eBee UAS (Unnamed Aircraft System) solution at R4 and early R5 growth stages. Next, a standard photogrammetric pipeline was carried out by SfM (Structure from Motion). Multispectral imagery serves to analyse the spectral response of the soybean end-member in 2D. In addition, RGB images were used to reconstruct the study area in 3D, evaluating the physiological growth dynamics per plot via height variations and crop volume estimations. As ground truth, destructive grain yield measurements were taken at the end of the growing season.SI"Development of Analytical Tools for Drone-based Canopy Phenotyping in Crop Breeding" (American Institute of Food and Agriculture

    Canopy Roughness: A New Phenotypic Trait to Estimate Aboveground Biomass from Unmanned Aerial System

    Get PDF
    Cost-effective phenotyping methods are urgently needed to advance crop genetics in order to meet the food, fuel, and fiber demands of the coming decades. Concretely, charac-terizing plot level traits in fields is of particular interest. Re-cent developments in high resolution imaging sensors for UAS (unmanned aerial systems) focused on collecting de-tailed phenotypic measurements are a potential solution. We introduce canopy roughness as a new plant plot-level trait. We tested its usability with soybean by optical data collect-ed from UAS to estimate biomass. We validate canopy roughness on a panel of 108 soybean [Glycine max (L.) Merr.] recombinant inbred lines in a multienvironment trial during the R2 growth stage. A senseFly eBee UAS platform obtained aerial images with a senseFly S.O.D.A. compact digital camera. Using a structure from motion (SfM) tech-nique, we reconstructed 3D point clouds of the soybean experiment. A novel pipeline for feature extraction was de-veloped to compute canopy roughness from point clouds. We used regression analysis to correlate canopy roughness with field-measured aboveground biomass (AGB) with a leave-one-out cross-validation. Overall, our models achieved a coefficient of determination (R2) greater than 0.5 in all trials. Moreover, we found that canopy roughness has the ability to discern AGB variations among different geno-types. Our test trials demonstrate the potential of canopy roughness as a reliable trait for high-throughput phenotyping to estimate AGB. As such, canopy roughness provides practical information to breeders in order to select pheno-types on the basis of UAS data

    El reto de la inclusión de los Objetivos de Desarrollo Sostenible en la formación inicial de profesores de secundaria: creación del MOOC curso cero sobre educación y ODS, inclusión en asignaturas y en trabajos fin de máster

    Get PDF
    Memoria ID-041. Ayudas de la Universidad de Salamanca para la innovación docente, curso 2021-2022

    Leaf Movements of Indoor Plants Monitored by Terrestrial LiDAR

    No full text
    Plant leaf movement is induced by some combination of different external and internal stimuli. Detailed geometric characterization of such movement is expected to improve understanding of these mechanisms. A metric high-quality, non-invasive and innovative sensor system to analyze plant movement is Terrestrial LiDAR (TLiDAR). This technique has an active sensor and is, therefore, independent of light conditions, able to obtain accurate high spatial and temporal resolution point clouds. In this study, a movement parameterization approach of leaf plants based on TLiDAR is introduced. For this purpose, two Calathea roseopicta plants were scanned in an indoor environment during 2 full-days, 1 day in natural light conditions and the other in darkness. The methodology to estimate leaf movement is based on segmenting individual leaves using an octree-based 3D-grid and monitoring the changes in their orientation by Principal Component Analysis. Additionally, canopy variations of the plant as a whole were characterized by a convex-hull approach. As a result, 9 leaves in plant 1 and 11 leaves in plant 2 were automatically detected with a global accuracy of 93.57 and 87.34%, respectively, compared to a manual detection. Regarding plant 1, in natural light conditions, the displacement average of the leaves between 7.00 a.m. and 12.30 p.m. was 3.67 cm as estimated using so-called deviation maps. The maximum displacement was 7.92 cm. In addition, the orientation changes of each leaf within a day were analyzed. The maximum variation in the vertical angle was 69.6° from 12.30 to 6.00 p.m. In darkness, the displacements were smaller and showed a different orientation pattern. The canopy volume of plant 1 changed more in the morning (4.42 dm3) than in the afternoon (2.57 dm3). The results of plant 2 largely confirmed the results of the first plant and were added to check the robustness of the methodology. The results show how to quantify leaf orientation variation and leaf movements along a day at mm accuracy in different light conditions. This confirms the feasibility of the proposed methodology to robustly analyse leaf movements

    Calibración vicaria de una cámara multiespectral desde paramotor

    Get PDF
    Trabajo de Fin de Máster del Máster en Geotecnologías cartográficas en ingeniería y arquitectura, curso 2012-2013.Con el paso del tiempo, la teledetección se ha convertido en una herramienta muy útil para la agricultura. A partir de la medida de la señal espectral reflejada o emitida por las cubiertas y la combinación de técnicas de teledetección, es posible identificar los distintos usos agrícolas así como numerosos parámetros y anomalías que éstos presenten. La teledetección se basa en la observación remota de la superficie terrestre y la captura de imágenes mediante un sistema sensor acoplado a un satélite espacial, a un vehículo aerotransportado, bien tripulado (avión, paramotor) o no tripulado (UAV), e incluso a vehículos y plataformas terrestres. Estas imágenes se someten a un análisis digital en el que se analiza el comportamiento espectral de cada píxel en las distintas regiones del espectro electromagnético en el que se ha registrado información. La base de la teledetección radica en que cada cuerpo presenta un patrón de energía reflejada/emitida propio y diferente que lo distingue del resto de los materiales cuando sobre él incide energía electromagnética (Chuvieco y Huete, 2010). La curva de reflectancia (es el gráfico de la reflectividad en función de la longitud de onda) de una planta (o cultivo) está directamente relacionada con sus características fenológicas, fisiológicas y morfológicas, por lo que cualquier cambio en la planta también perturbará su reflectancia (Lass y Callihan, 1997; Schmidt y Skidmore, 2003). Estas diferencias de comportamiento espectral intrínseco de cada especie y/o planta individual son las que permiten su discriminación y mapeo mediante técnicas de análisis y clasificación digital. A la hora de realizar un estudio basado en teledetección, en la mayoría de los casos el principal objetivo que se persigue es obtener la localización y características de las distintas variables objeto de estudio. Esta información puede ser obtenida a partir de diferentes técnicas, entre las que destaca la clasificación digital de imágenes. El objetivo de la clasificación es el reconocimiento de clases cuyos elementos (píxeles) tengan ciertas características en común, de manera que se crea una nueva imagen del mismo tamaño y características que la original, con la importante diferencia de que el nivel digital que define a cada píxel no tiene relación con la radiancia detectada por el sensor, sino que se trata de una etiqueta que identifica la categoría o clase, normalmente cualitativa, asignada a ese píxel (Chuvieco y Huete, 2010). Con el incremento de la resolución espacial y espectral, actualmente es posible desarrollar técnicas de agricultura de precisión con exactitudes por debajo del metro. Diversos autores han realizado trabajos basados en el análisis de variables agronómicas que afectan directamente al cultivo para optimizar su manejo. Un ejemplo claro son los trabajos que se centran en determinar las necesidades nutricionales precisas de una parcela para proponer aplicaciones variables de fertilizante a lo largo del cultivo (Schmit et al., 2011) o en las deficiencias hídricas para determinar las necesidades de riego (Nahry et al., 2011). En otros casos, el manejo preciso se centra en agentes bióticos que pueden alterar y/o menguar la producción agrícola como es el caso de la detección de cultivos afectados por algún tipo de plaga (Lan et al., 2009) y el estudio del estado fitosanitario 2 de los cultivos (Feng et al., 2010). Dentro de este grupo, y mucho más frecuentes son los estudios centrados en la detección de plantas invasoras (Wang et al., 2008) o malas hierbas (Peña‐Barragán et al., 2010) que compiten directamente por los mismos recursos del cultivo

    Relationship between number of points and error in DBH estimation.

    No full text
    <p>Relationship between number of points and error in DBH estimation.</p

    Trunk morphology effects on DBH estimation.

    No full text
    <p>Point cloud bin (left) and circle fit of the projected points in plan-view for a circular trunk shape (a) and a non-circular trunk shape (b). Both cases correspond to a 40 cm bin.</p
    corecore